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ABSTRACT

The activites at the ETS have expanded from observations of
deep-space artificial satellites during the dark hours to
observations of near-Earth satellites near noon. Not only do
these varying tasks require different video cameras and
associated equipment, they can benefit from a tailored analysis
of the resulting astrometric data. In particular, the
observation of near-Earth artificial satellites very near the
astronomical zenith has become a frequent mode of operation. For
some of these satellites a parallax can be discerned when both
ETS telescopes are used. For others, their nearly circular orbit
coupled with a zenith passage suffices to fix their elemenL set.

" This Project Report details both types of analysis.
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I. INTRODUCTION

Certain artificial satellites are best illuminated at

twilight. The reason is they are so close to the Earth that were

it darker they would be eclipsed. Clearly were it brighter than

twilight, their phase angle would be larger and the sky

background would be very bright. A consequence of these

considerations is that they are most easily observed near the

zenith. A result of their closeness to the Earth is increased

atmospheric drag. Therefore, whether by design or owing to

natural forces, their orbits are nearly circular. Hence, there

* are only four meaningful entries in their orbital element set,

not six.

The bulk of this Report is concerned with two different

methods of obtaining these four quantities as a result of

observing the nearly zenithal passage of an artificial satellite

in a nearly circular orbit. Two cases are presented. In the

: first instance, a satellite beyond about 1000 km will move slowly

enough across the small field of view of the ETS telescopes to

allow for a good deduction of its angular velocity. This plus

the position and the relevant celestial mechanics uniquely

determines the element set. In the second case the satellite is

much closer and moves too fast to reliably determine its speed. V

However, its very closeness means that it has a measurable

P .t  parallax. The measurement of the parallax, the slope of the

o..................... .......................



streaks, and the position also uniquely defines the element set.

This Project Report discusses both of these cases in depth.

The principal aspect of the analysis missing is an estimation of

the errors involved for we usually observe an object slightly off;

the zenith, whose orbit is not truly circular, and so on. As

observing needs demand, more sophistication will be introduced.
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II. POSITION PLUS ANGULAR VELOCITY

A. Data Acquisition

From a videotape of the passage of a near-Earth satellite

played back in very slow motion one can clearly see the

progression of the head of the streak. If the recorder has a

stop frame mode, then individual frames (and fields; the 1/30 of

a second video frame consists of two 1/60 of a second interleaved

video fields) can be viewed. The addition of a device for

measuring location on the videotape and a frame counter complete

the data acquisition hardware (see Figs. 1 and 2).

With such a setup (Fig. 2) one can make a progression of

pairs of (say) rectangular coordinate measures of the head of the

streak. A simple method of treating the data that smooths out

non-linearities in the camera target, stretching of the

videotape, and so on, is to difference them pairwise. Division

by the appropriate number of frames, multiplication by 30, and

then multiplication by the plate scale gives the velocity in arc

seconds per second of time. Averaging a series of such pairwise-

differenced velocities across the field of view provides the

angular velocity data for analysis.

It is useful to be able to determine the orbital inclination

from the slope of the streak. To this end the pairs of points

are fit, via the method of least squares, to a straight line.

The last piece of information needed is the position and we know

3
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Figure 2. Block diagram of hardware used to measure an
approximation of focal plane coordinates from videotapes.
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that; it is at the zenith at the time of observation.

B. Celestial Mechanics

From the solution of the two-body problem we can express the

geocentric right ascension and declination in terms of the

orbital element set. Using the symbols defined below, the

results are

Q + tan-'(cositanu), 6 - sin-'(sinisinu) 1)

a = semi-major axis

e - eccentricity

W argument of perigee

i = inclination

= longitude of the ascending node

T - time of perigee passage

v - true anomaly

u - v + w - argument of latitude

E eccentric anomaly

M mean anomaly

n = mean motion

a= geocentric right ascension

6 geocentric declination

-r =local sidereal time

' geocentric latitude of the observer r

6



A - topocentric right ascension

A - topocentric declination

Because I have assumed the orbit is circular, e - 0. I can now

define T and Q such that w - 0. Then, at time t,

u - v + V - v - M - E - n(t - T)

Rewrite the expression for the mean anomaly as

M Mz + n(t - tz )

where tz is the Universal Time corresponding to zenith passage.

As I will explicitly show below, at the zenith,

a A -r and 6 A - €'

for any observer. Thus, since a Tr and 6 = 0' at the zenith by

definition, it follows that Eqs. (1) implies Eqs. (2);

z tan-'(cositanMz), 4' = sin-'(sinisinMz ) (2)

For our observatory 0' > 0. Hence, as i e [0,T] and sini > 0, it

follows that Mz C [0,T] too. Equations (2) are two equations

7-..
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in three unknowns. The angular velocity provides two more

equations and introduces the fourth unknown (i.e., a). Before
,v "

seeing this I need to project the geocentric motion onto the

topocentric celestial sphere.

C. Topocentric Appearance

Let the observer's geocentric location be given by p2 - -.I

pl(T,0') where . is a unit vector of direction cosines in the

equatorial coordinate system. The satellite's geocentric

location in this reference frame can be written as r -r_(a,).

The topocentric location is R R(A,A),.

R r (3)

Equation (3) can be rewritten in component form as

psinh
tan(a - A) = (4)I -peos-h [["

qsin(Y - 6)

1 qcos( -"

R/r = sin(6 - Y)csc(A - Y)

8~ ~ t - - -. -. --.-. - -



where the auxilary quantities p, q, and Y are defined by

p (p/r)cosO'sec6

(5)

q = (p/r)sino'cscY

tanY - tano'cos[(a - A)/2]sec[h (a - A)/2]

h is the hour angle - - a.

Note that h - 0 when t - a, that is for any object on the

celestial meridian there is no parallax in right ascension.

Therefore, a - A at the zenith. Note too that if h - 0 and a - A

then Y - *'. Whence if 6 - €, too (i.e., at the astronomical '

zenith), 6 - A from the middle of Eqs. (4). This proves my

assertions earlier.

Differentiate Eq. (3) once with respect to the time t and

solve for R, A, and A. Evaluate the results at the zenith

[wherein R - r - p despite the apparent indeterminateness in the

last of Eqs. (4)]. You will find -

aa - PT a(• .z .z j
Rz 0, Az a - p ' Az a - p (6)

I have replaced r by a because e is zero.

From the differentiated version of Eqs. (1) and the fact

9



that u - n(t - T) in this instance one finds

ncosisec
2M

1 + cos2itan2', 6 - nsinisec'cosM

Now it is known that Mz E [O,1]. So, either Mz is an acute

angle and sinM z - sinO'csci or Mz is an obtuse angle and can

be written as Mz - i - ms where mz £ [0,ir/2]. As in this.

instance, sinM z - sin(r - mz) - sinm z - cscisin ', tanMz

- + sino'/(sin 2i -sin 2$')1 /' in the two cases. Only the square

of this is needed,

az ncosisec2 €', 6z - nsiniseco'cosMz

Observe that if Mz is less than or equal to w/2 then

cosMz - +(sin 2 i - sin 2 0') 1 /2 osci whereas if Mz is greater

than or equal to n/2, cosMz - -cosm z - -(sin'i - sin 2€')1 /_

csci. Therefore,

1 s2 I M acute
z +  n(sin - Sin 2') sec ' M z obtuse

From Eqs. (6) it follows that the sign of Az is the same as that

. as 6 . Moreover, sgn(A z ) is a quantity that is determined by

the observations themselves. Whence, the correct quadrant for .
Mz can be ascertained by observing the north-south direction of

motion. Finally, for the topocentric angular velocity,

10
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1/2
nacosisec2 ' - p + na(sin2 i-sin 2 ') seco (

A =(7)
z a -p a -p

Before proceeding to a calculation of the motion as seen

projected onto the telescope's focal plane, which is what is

recorded by the videotape recorder, consider the topocentric

angular speed ez,

z (iAcos2Az + .2 ): /2 (8)

na -" /2[ -2(pi/na)cosi + (pt/na)coso]/"

For a polar orbit, and many near-Earth satellites are nearly in

such an orbit,

n a )2O"01 2 1
z a- p [I + (pi/na) os '] /

na a

~ a + -(pi/na)cos2'

za p

as na >> pT. Thus, the binomial theorem expansion is especially

accurate in this case. It should also be clear that for a fixed

value of a, bz is a maximum for a polar orbit. Table 1

provides a matrix of ez values (in deg/sec) for Rz = 100(100)

1500 km and i - 35(10)85, 900.
' " .[-11
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TABLE 1

TOPOCENTRIC ANGULAR SPEED (DEG/SEC)

Rz 350 450 550 650 750 850 90

km j

100 4.278 4.309 4.3146 4.388 4.432 4.478 4.502

200 2.122 2.138 2.156 2.177 2.199 2.222 2.234 1
300 1.403 1.414 1.426 1.440 1.455 1.470 1.478

400 1.044 1.052 1.061 1.072 1.083 1.094 1 .100

500 0.829 0.835 0.843 0.851 0.860 0.869 0.874

600 0.686 0.691 0.697 0.704 0.711 0.719 0.723

700 0.583 0.588 0.593 0.599 0.605 0.612 0.615

800 0.507 0.511 0.515 0.520 0.526 0.532 0.535

900 0.447 0.451 0.455 0.459 0.464 0.469 0.472

1000 0.399 0.1403 0.1406 0.1410 0.1415 0.1420 0.1422

1100 0.361 0.363 0.367 0.371 0.375 0.379 0.381

1200 0.328 0.331 0.334 0.337 0.341 0.345 0.347

1300 0.301 0.303 0.306 0.309 0.313 0.316 0.318

1400 0.278 0.280 0.282 0.285 0.289 0.292 0.293

1500 0.257 0.259 0.262 0.265 0.268 0.271 0.272

12
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D. Focal Plane Coordinates

The motion we are interested in appears to occur on the

surface of a sphere. We analyze it after projection onto the

focal plane of the telescope. The nature of this projection is

complicated but for small fields of view the results are simple.

So, incorporating this new approximation into our analysis, the

rectangular coordinates , r in the camera's focal plane

(measured in the same units as the telescope's focal length f),

where n is positive northward (increasing declination) and & is

positive eastward (increasing right ascension), are given by

& - (A A*)cosA*, n/f - A - A*

In Eqs. (9) & and n are the rectangular coordinates appropriate

for an object near the optical axis of the telescope when the

object's topocentric right ascension and declination are A, A.

The topocentric equatorial coordinates of the point where the

(extended) optical axis of the telescope would pierce the sky are

A*,A*

Now, since I have assumed that the field of view is small,

it follows that for the cases of interest (n large) the transit

time across the field of view will be short. Therefore, a

sufficiently accurate representation of A and A around the time

of zenith passage is just the first two terms in a power series

in t - tz;

13

-°.

"° .. .-. - .- . .. ... . ,.-.- . , b , .- ° Z .- k .- o . ° . ..- % ,. .. ,



0. a..

A Az + z(t- tz), A +Z iz(t- tz)

Az and Az are just equal to T and *'. Az and Az were

last seen in Eqs. (7). Combining this information with Eqs. (9),

and the fact that A*- T, A - *', yields

p.-.

&/f Az(t tz)cOSO', n/f - Az(t - tz)

The speed of motion across the field of view is (2 + 2),/-

which is, it turns out, just fez; 6z was given in Eq. (8).

The slope of the streak, dn/d&, is

1/2

dn) na(sin 2 i - sin 2*') sec 2 '

- d-i . ( a TsecT -2 F T (10)

where the plus or minus sign ambiguity still stems from the

quadrant ambiguity for Mz. Take the limit as na/pi--. Then,

6z-=" [GME/a(a - P)2] /2 (1la)

since n2a a GME, and

S -4.-+ (sinai - sin¢') /1 seci

Or, solving for the inclination (s is the slope of the streak

determined by the least squares fit referred to earlier)

14
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cos,

Cosi - + 72 (llb)(1 + S = )

Now the plus/minus sign ambiguity is from a square root

operation.

In this approximation one can proceed as follows:

1. Note the direction of motion. This fixes the sign of

Az and the quadrant for Mz.

2. Calculate fiz from the videotapes as discussed in

subsection A. Solve the cubic equation for the

semi-major axis a in Eq. (11a).

3. Determine the slope of the streak as discussed in

subsection A and use it in Eq. (11b). This provides a

value for the inclination i. The correct quadrant for

i is fixed by the second part of Eqs. (2). Obtain a

value for Mz from this expression too.

4. Use the time of zenith passage plus the first part of

Eqs. (2) to calculate the longitude of the ascending

node Q.

5. Refine a and i as necessary from Eqs. (8,10) in an

iterative fashion and repeat steps 3, 4, 5.

15



P E. The General Problem

Equations (1) and their derivatives are four equations in

the four unknowns a, i, 9l, and T. Projecting them onto the

i* topocentric celestial sphere via Eqs. (4, 5) introduces no new

variables. Actually there is a better representation in terms of

topocentric variables given by

sin(a - A) - psinH

sin(6 - A) - qsin(Y - A)

where p, q, and Y are defined in Eqs. (5) and H T - A.

Finally, the modelling of the motion across the focal plane in

*i' Eqs. (9) also introduces no new variables. Thus, F, n and their

*. derivatives are connected to a, i, 0l, and T albeit indirectly.

Moreover, there appears to be no way to elegantly solve the

[. problem numerically.

16 .
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III. PARALLAX

A. Data Acquisition

In this instance the near-Earth satellite was so close

(< 1000 km) to us that we could separately resolve the two

streaks from the two telescopes at the ETS after the videotapes

were overlaid (see Fig. 3). The distance between corresponding

points on the streaks is the parallax. This is related to the

topocentric distance of the satellite. Since we are assuming a

circular orbit and zenith passage, the topocentric distance is

just a - p [use L'Hospital's rule on the last of Eqs. (4) for an

analytical demonstration of the geometrically obvious].

Therefore, we can compute the semi-major axis a. The inclination

of the orbit comes from a measurement of the slope of the

streak. Note that since a is smaller for this class of

satellites than those treated above, this is an even better

approximation.

Looking at Fig. 3 it is imperative to realize that the

parallax is the distance between corresponding points on the two

streaks and not the perpendicular distance between the two

streaks. We now need to consider how to go from the experimental

setup to the appropriate quantity. : [:

B. The Geometry

Consider an observer located at 2 - pI(T,O'). In detail,

this observer has a geocentric distance p, a geocentric latitude

17



PARALLAX

0*

* Figure 3. Schematic representation of a pair of simultaneous
video frames overlaid. In this case (unlike Fig. 1), the
satellite is so close that a parallax can be detected. Note
the distinction between the distance between the streaks and
the parallax itself. The parallax is the distance between
corresponding (i.e., simultaneously occurring) points on the

* streaks.

18
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*', and a geocentric west longitude A. The local sidereal time

depends upon A and the Universal Time t via

- constant I.0027379093t - X

The numerical constant exhibited is just r in Eq. (6). Let this

observer perceive a satellite at topocentric position A and A

when it has geocentric location r - rt(a,6). Equations (3, 4 ,

and 5) provide the interrelationships.

Now consider a second, nearby observer whose geocentric

location is given by p + Ap, *' + A$', and X + AX. At the same

instant of time he will perceive the satellite to be at A + AA

and A + AA where

(p + Ap)sin(h + Ah)
tan( - A - AA) - I -p + Ap)cos~h + Ah)

(q + Aq)sin(Y + AYf 6)

tan(6 - A - AA) = I - -;&s+ -- + AY -

Although written in a suggestive form, these equations are

exact. If JApI and p[(AAcosO')2 + (At)2]I/2 are both small

quantities compared to p, then we may simplify these results, for

AA, AA, Ap, Aq, and AY will all be small in magnitude too.

Summarizing several pages of algebra,

19
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-777- -77-711 !1 _' 7- .* * -

pAXcosh - Apsinh -p-A"

1 - 2pco-sh +d-

(12)

-qAYcos(Y 6) - Aqsin(Y -6) q2 Ay

I -2 co Y-6F+ q 2

AYsecYcscY (AA/2)tan[(a A)12] tan[h + (a A)/]12

Ascsec( csc/' - Axtan[h - a -A)/2]

Ap/p - Ap/p - Ao'tan '

Aq/q - Ap/p + A0'cot¢' - AYcotY"_.

and, since Ah -AX

AR/R = [cot(A - Y) - cot(6 - Y)]AY - AAcot(A - Y)

C. Focal Plane Formulas .

Once again each observer records the events as projected

onto his focal plane. If they both have small fields of view,

then the approximation in Eqs. (9) is appropriate. If the first

observer measures &, n corresponding to A, A, then the second one

will obtain + + A and n + An corresponding to A + AA and A + AA.

As AA* = -AX and AA* A0',

AEIf -(A - A*)Ao'sinA* + (AA + AX)cosA* (13a)

20
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An/f AA -A' (13b)

The separation between corresponding points on the streaks is

equal to [(A&)2 + (An )2]I/ .

However, all of this occurs near a zenith passage. Thus,

0, a A A T, 6 zA A ', Y ',and p q

p/r = p/a. From Eqs. (12),

PAX -qAY
AA --- AA---- , and AY-- AO'-

Pr

Therefore, Eqs. (13) may be approximately written as

AXcos¢' A¢"

A/f pa An/f - (14)p/a (14I - pla' I - p/a ._
C,

The distance between corresponding points on the streak is

[(AXcos I)2 + (A01 2

1 - p

Were this measured we could compute the semi-major axis a for a

known observer separation.

D. Data Analysis - Two Parallel Lines

If all one has is two parallel streaks, near the center of

the field of view, from two telescopes pointing nearly

2
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zenithally, then one can no longer determine which are

corresponding pairs of points. The reason is simple - we are

looking at a static picture wherein all time information

concerning the development of the streaks has been lost. Hence,

we must proceed in another fashion.

Let ( ,n ) be the values of , n at time t, for the first

observer. The corresponding values of these coordinates for the

second observer will be ( + A&,n + An). At time t, the first

observer measures (E 2 ,n2). For the corresponding point on his

streak the second observer will deduce (&I + A&,n 2 + An). Note

that there is no time dependence in An or A , see Eqs. (14).

That is why the corresponding points are identically offset and,

therefore, why the two streaks are parallel.

Use the two-point form of the equation of a straight line to

deduce the equations for the two streaks. Then recast the result

in the slope-intercept form. The results are

-"2  - n1 2 TI - & I 2

n - m+ b, m - b -

m - + B, B - b An - mAE (15)

The two slopes are the same but the y-intercepts are different.

Clearly if we can determine b, B, and m, then in light of Eqs.

(14), we can determine the semi-major axis a.

22
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As our instruments and measuring devices are not perfect, we

do not measure t, n but approximations to them, say x, y.

Suppose that we make N measurements on the fainter streak

I(xn,yn)l and N measurements on the brighter streak

{(Xn,Yn)l. Then, since it is more difficult to measure

fainter streaks than it is to measure brighter ones, we weight

the measures on the fainter streak by w e [0,1]. A logical sum

of the squares of the residuals to consider is

N ]2 [2

S I ; {wy n  (mxn + b)]+ [Y - (mXn B)] In n n n
n-1

Minimizing S with respect to m, b, and B provides three normal

equations for their determination. From these values and the

knowledge of p, A¢', and AX comes a if the relationship (15) is

utilized.

With a and i determined and the direction of motion known,

Eqs. (2) yields Mz and then 9 since we know the time of

observation.
L

E. The Inclination

There is a purely geometric way to deduce the inclination.

One need only draw the topocentric celestial sphere and reflect |

upon the four exhaustive and exclusive possibilities shown in

Fig. 4. By solving the node, zenith, and meridian/equator

intersection right spherical triangle, one comes to Eq. (11b). . .

23
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